16 research outputs found

    A Fuzzy-Logic Approach for Optimized and Cost-Effective Early Warning System for Tsunami Detection

    Get PDF
    With the economic crisis going around the world, a new approach, “build back better”, has been adopted as a recovery package for various systems. The tsunami detection and warning system is one such system, crucial for saving human lives and infrastructure. While designing a tsunami detection system, the social, economic, and geographical circumstances are considered to be vital. This research is focused on designing a low-cost early warning system mainly for underdeveloped countries, which are more prone to tsunami damage due to a lack of any reliable early warning and detection systems. Such countries require proper cost-effective solutions to address these issues. Previous research has shown that the existing systems are either very costly or hard to implement and manage. In this study, we present a wireless sensor networking model, which is an optimized model in terms of cost, delay, and energy consumption. This research contemplates the techniques and advantages of the intelligence of marine animals. We propose a fuzzy logic-based approach for early tsunami detection, using electromagnetic and pressure sensors, based on the behavioral attributes of turtles and real-time values of earthquakes and water levels

    Towards SDN-based smart contract solution for IoT access control

    Get PDF
    Access control is essential for the IoT environment to ensure that only approved and trusted parties are able to configure devices, access sensor information, and command actuators to execute activities. The IoT ecosystem is subject to various access control complications due to the limited latency between IoT devices and the Internet, low energy requirements of IoT devices, the distributed framework, ad-hoc networks, and an exceptionally large number of heterogeneous IoT devices that need to be managed. The motivation for this proposed work is to resolve the incurring challenges of IoT associated with management and access control security. Each IoT domain implementation has particular features and needs separate access control policies to be considered in order to design a secure solution. This research work aims to resolve the intricacy of policies management, forged policies, dissemination, tracking of access control policies, automation, and central management of IoT nodes and provides a trackable and auditable access control policy management system that prevents forged policy dissemination by applying Software Defined Network (SDN) and blockchain technology in an IoT environment. Integration of SDN and blockchain provides a robust solution for IoT environment security. Recently, smart contracts have become one of blockchain technology’s most promising applications. The integration of smart contracts with blockchain technology provides the capability of designing tamper-proof and independently verifiable policies. In this paper, we propose a novel, scalable solution for implementing immutable, verifiable, adaptive, and automated access control policies for IoT devices together with a successful proof of concept that demonstrates the scalability of the proposed solution. The performance of the proposed solution is evaluated in terms of throughput and resource access delay between the blockchain component and the controller as well as from node to node. The number of nodes in the IoT network and the number of resource access requests were independently and systematically increased during the evaluations. The results illustrate that the resource access delay and throughput were affected neither linearly nor exponentially; hence, the proposed solution shows no significant degradation in performance with an increase in the number of nodes and/or requests

    Harnessing Big Data Analytics for Healthcare: A Comprehensive Review of Frameworks, Implications, Applications, and Impacts

    Get PDF
    Big Data Analytics (BDA) has garnered significant attention in both academia and industries, particularly in sectors such as healthcare, owing to the exponential growth of data and advancements in technology. The integration of data from diverse sources and the utilization of advanced analytical techniques has the potential to revolutionize healthcare by improving diagnostic accuracy, enabling personalized medicine, and enhancing patient outcomes. In this paper, we aim to provide a comprehensive literature review on the application of big data analytics in healthcare, focusing on its ecosystem, applications, and data sources. To achieve this, an extensive analysis of scientific studies published between 2013 and 2023 was conducted and overall 180 scientific studies were thoroughly evaluated, establishing a strong foundation for future research and identifying collaboration opportunities in the healthcare domain. The study delves into various application areas of BDA in healthcare, highlights successful implementations, and explores their potential to enhance healthcare outcomes while reducing costs. Additionally, it outlines the challenges and limitations associated with BDA in healthcare, discusses modelling tools and techniques, showcases deployed solutions, and presents the advantages of BDA through various real-world use cases. Furthermore, this study identifies and discusses key open research challenges in the field of big data analytics in healthcare, aiming to push the boundaries and contribute to enhanced healthcare outcomes and decision-making processes

    PenChain: A Blockchain-Based Platform for Penalty-Aware Service Provisioning

    Get PDF
    Service provisioning is of paramount importance as we are now heading towards a world of integrated services giving rise to the next generation of service ecosystems. The huge number of service offerings that will be available to customers in future scenarios require a novel approach to service registry and discovery that allows customers to choose the offerings that best match their preferences. One way to achieve this is to introduce the provider’s reputation, i.e., a quality indicator of the provisioned service, as an additional search criterion. Now, with blockchain technology in our hands, automated regulation of service-level agreements (SLAs) that capture mutual agreements between all involved parties has regained momentum. In this article, we report on our full-fledged work on the conception, design, and construction of a platform for SLA-minded service provisioning called PenChain. With our work, we demonstrate that penalty-aware SLAs of general services–if represented in machine-readable logic and assisted by distributed ledger technology–are programmatically enforceable. We devise algorithms for ranking services in a search result taking into account the digitized values of the SLAs. We offer two scenario-based evaluations of PenChain in the field of precision agriculture and in the domain of automotive manufacturing. Furthermore, we examine the scalability and data security of PenChain for precision agriculture

    Towards a machine learning-based framework for DDOS attack detection in software-defined IoT (SD-IoT) networks

    Get PDF
    The Internet of Things (IoT) is a complex and diverse network consisting of resource-constrained sensors/devices/things that are vulnerable to various security threats, particularly Distributed Denial of Services (DDoS) attacks. Recently, the integration of Software Defined Networking (SDN) with IoT has emerged as a promising approach for improving security and access control mechanisms. However, DDoS attacks continue to pose a significant threat to IoT networks, as they can be executed through botnet or zombie attacks. Machine learning-based security frameworks offer a viable solution to scrutinize the behavior of IoT devices and compile a profile that enables the decision-making process to maintain the integrity of the IoT environment. In this paper, we present a machine learning-based approach to detect DDoS attacks in an SDN-WISE IoT controller. We have integrated a machine learning-based detection module into the controller and set up a testbed environment to simulate DDoS attack traffic generation. The traffic is captured by a logging mechanism added to the SDN-WISE controller, which writes network logs into a log file that is pre-processed and converted into a dataset. The machine learning DDoS detection module, integrated into the SDN-WISE controller, uses Naive Bayes (NB), Decision Tree (DT), and Support Vector Machine (SVM) algorithms to classify SDN-IoT network packets. We evaluate the performance of the proposed framework using different traffic simulation scenarios and compare the results generated by the machine learning DDoS detection module. The proposed framework achieved an accuracy rate of 97.4%, 96.1%, and 98.1% for NB, SVM, and DT, respectively. The attack detection module takes up to 30% usage of memory and CPU, and it saves about 70% memory while keeping the CPU free up to 70% to process the SD-IoT network traffic with an average throughput of 48 packets per second, achieving an accuracy of 97.2%. Our experimental results demonstrate the superiority of the proposed framework in detecting DDoS attacks in an SDN-WISE IoT environment. The proposed approach can be used to enhance the security of IoT networks and mitigate the risk of DDoS attacks

    Toward Software-Defined Networking-Based IoT Frameworks: A Systematic Literature Review, Taxonomy, Open Challenges and Prospects

    Get PDF
    Internet of Things (IoT) is characterized as one of the leading actors for the next evolutionary stage in the computing world. IoT-based applications have already produced a plethora of novel services and are improving the living standard by enabling innovative and smart solutions. However, along with its rapid adoption, IoT technology also creates complex challenges regarding the management of IoT networks due to its resource limitations (computational power, energy, and security). Hence, it is urgently needed to refine the IoT-based application’s architectures to robustly manage the overall IoT infrastructure. Software-defined networking (SDN) has emerged as a paradigm that offers software-based controllers to manage hardware infrastructure and traffic flow on a network effectively. SDN architecture has the potential to provide efficient and reliable IoT network management. This research provides a comprehensive survey investigating the published studies on SDN-based frameworks to address IoT management issues in the dimensions of fault tolerance, energy management, scalability, load balancing, and security service provisioning within the IoT networks. We conducted a Systematic Literature Review (SLR) on the research studies (published from 2010 to 2022) focusing on SDN-based IoT management frameworks. We provide an extensive discussion on various aspects of SDN-based IoT solutions and architectures. We elaborate a taxonomy of the existing SDN-based IoT frameworks and solutions by classifying them into categories such as network function virtualization, middleware, OpenFlow adaptation, and blockchain-based management. We present the research gaps by identifying and analyzing the key architectural requirements and management issues in IoT infrastructures. Finally, we highlight various challenges and a range of promising opportunities for future research to provide a roadmap for addressing the weaknesses and identifying the benefits from the potentials offered by SDN-based IoT solutions

    Meta-knowledge guided Bayesian optimization framework for robust crop yield estimation

    Get PDF
    Accurate pre-harvest crop yield estimation is vital for agricultural sustainability and economic stability. The existing yield estimating models exhibit deficiencies in insufficient examination of hyperparameters, lack of robustness, restricted transferability of meta-models, and uncertain generalizability when applied to agricultural data. This study presents a novel meta-knowledge-guided framework that leverages three diverse agricultural datasets and explores meta-knowledge transfer in frequent hyperparameter optimization scenarios. The framework’s approach involves base tasks using LightGBM and Bayesian Optimization, which automates hyperparameter optimization by eliminating the need for manual adjustments. Conducted rigorous experiments to analyze the meta-knowledge transformation of RGPE, SGPR, and TransBO algorithms, achieving impressive R2 values (0.8415, 0.9865, 0.9708) using rgpe_prf meta-knowledge transfer on diverse datasets. Furthermore, the framework yielded excellent results for mean squared error (MSE), mean absolute error (MAE), scaled MSE, and scaled MAE. These results emphasize the method’s significance, offering valuable insights for crop yield estimation, benefiting farmers and the agricultural sector

    MED-Prompt: A novel prompt engineering framework for medicine prediction on free-text clinical notes

    No full text
    Existing AI-based medicine prediction systems require substantial training time, computing resources, and extensive labeled data, yet they often lack scalability. To bridge these gaps, this study introduces a novel MED-Prompt framework that employs pretrained models such as BERT, BioBERT, and ClinicalBERT. The core of our framework lies in developing specialized prompts, which act as guiding instructions for the models during the prediction process. MED-Prompt develops prompts that help models interpret and extract medical information from clinical corpus. The clinical text was derived from the widely known MIMIC-III 11 https://physionet.org/content/mimiciii/1.4/. dataset. The study performs a comparative analysis and evaluates the performance of Manual-Prompt and GPT-Prompts. Further, a fine-tuned approach is developed within MED-Prompt, leveraging transfer learning to achieve prompt-guided medicine predictions. The proposed method achieved a maximum F1-score of 96.8%, which is more than 40% F1-score higher than the pretrained model. In addition, the fine-tuned also showed an average of 2.38 times better processing performance. These results revealed that MED-Prompt is scalable regarding the number of training records and input prompts. These results not only demonstrate the proficiency and effectiveness of the framework but also significantly reduce computational requirements. This also indicates that the proposed approach has the potential to significantly improve patient care, reduce resource requirements, and increase the overall effectiveness of AI-driven medical prediction systems

    Smart contract-based security architecture for collaborative services in municipal smart cities

    Get PDF
    The Internet of Things (IoT) can provide intelligent and effective solutions to various applications with higher accuracy that requires less or no human intervention. Smart Cities are one of the significant applications of the IoT comprising a collection of various services such as intelligent transportation, waste management, smart homes, etc. These heterogeneous services offer a wide range of collaborative applications in smart cities. A smart municipality in a smart city is a concept in which a digital municipal corporation is developed to provide comprehensive local government collaboration services based on digitization and automation aiming towards raising the living standards of citizens. Interoperability between heterogeneous services for collaborative tasks creates challenges for data security and privacy. Ensuring integrity and confidentiality of information is critical, and reliable data is essential to both the government and its citizens. In this paper, we proposed a service security architecture based on authentication and authorization for constrained environments during collaborative tasks for Software Defined Networking (SDN) and smart contract-enabled municipal smart cities. The proposed collaborative service security framework is being tested on the Multichain Blockchain networks. We present a novel method for using smart contracts in multichain blockchains for data security during collaborative tasks in smart city municipal architecture. The proposed security solution is based on the dynamism of smart contracts to govern and control all interactions and transactions securely between different heterogeneous IoT networks. We implemented a supportive use case for collaborative services in an SDN-enabled IoT architecture to evaluate the feasibility of the proposed service security architecture

    A Novel De-Ghosting Image Fusion Technique for Multi-Exposure, Multi-Focus Images Using Guided Image Filtering

    No full text
    In this paper, a novel de-ghosting image fusion technique is presented, which enhances the quality of low dynamic range images using multi-level exposures taken from the ordinary camera and also removes the ghosting artifact. In the proposed algorithm, first, the source images, taken under different exposure settings, are decomposed into base and detail layers using two-scale decomposition. The base and detail layers contain small and large-scale variation details of the source images, respectively. The Laplacian-of-Gaussian filter is applied to the source images to get the edge information. Afterward, the saliency map of the edges is computed. To remove the ghosting artifacts, a weight matrix is calculated by applying the median filter on the histogram equalized source images. The weight matrix is combined with the saliency map to generate more accurate weights. The separate weights for the base and detail layers are calculated using guided image filters. Finally, the base and detail layers' weights are fused with the source images to generate a vivid and enhanced image without any artifacts. The proposed technique is evaluated both qualitatively and quantitatively. The comparison of our technique in terms of Yang's Metric (QY), Quality Mutual Information (QMI), Gradient-based Fusion Metric (QG) and Chen Blum's Metric (QCB) with other state-of-the-art techniques proves that the proposed technique outperforms existing techniques
    corecore